

- Introduction to Ballard
- Commercialization Timelines
- Why Fuel Cells
- Technology "Roadmap"
- Testing Capability
- Fleet Experience
- Automotive Path to Commercialization
- Manufacturing Capability
- Summary

Ballard Power Systems

BALLARD®

 World-leading proton exchange membrane fuel cell design, development, manufacture and sale

- Fuel cell focus with strong development and funding partners and a lead customer "go to market" strategy
- ~975 granted and pending patent applications worldwide
- ~600 employees
- \$53.7 million revenue in 2005
- Solid financial position with \$213 million in cash and cash equivalents

Focused on Near and Long-Term Commercial Markets

BALLARD®

Ballard's products and services include: fuel cells & components, field service & parts and engineering services

market commercialization timeline based on Ballard projections

pre-commercial, positive gross margin sales

commercial sales

Fuel Cells – the Best Long-Term Solution

BALLARD®

		IOT Habrida							
		BEV		ICE Hybrids					Commentional
Desired Characteristics	Fuel Cells			Hydrogen Hybrid	Pluggable Hybrid	Diesel Hybrid	Gasoline Hybrid	Biofuel ICE	Conventional ICE (Baseline)
Vehicle Emissions	Zero	Zer		solution to energy & environmental challenges: air quality, greenhouse gases and energy security					
Well-to-Wheels GHG Emissions	Zero - High (H2 source dependant)	Zero - High depend	С						
Max Efficiency (Tank-to-Wheel)	High : >50%	Medium	9						
Well-to-Wheels Energy Efficiency	Low- High (H2 source dependant)	Low - High	7						
Fuel Flexibility	High	ıv/edi	l	, 5					
Vehicle Range	Medium – high (advances in H2 storage required)	Lov		Unlike ICE hybrids, fuel cell hybrids enable pure electric drive trains.					
Reliability	High – No Moving Parts	Potentially No Movin		Hybridization accelerates commercial introduction of fuel cell vehicles.					
Cost	Low – medium Expected to compete with ICE	High – Ex low vol produc	lume	Medium	Medium	Medium	Medium	Medium	Low

Technology "Road Map" Summary

BALLARD®

- Technology "Road Map" is Ballard's commitment to demonstrate commercially-viable automotive fuel cell technology by 2010
- Cost and durability are the biggest barriers remaining
- Detailed plans and organizational capabilities in place

	2005 Achievement	2006 Goal	2010 Target
Cost	\$73/kW	\$65/kW	\$30/kW
Freeze Start	-25°C in 90 seconds	-30°C in 195 seconds	-30°C in 30 seconds
Power Density	1,470 Watts/L _(net)	1,500 Watts/L _(net)	2,500 Watts/L _(net)
Durability	2,100 hours	2,300 hours	5,000 hours

Technology Planning supporting "Road Map"

BALLARD®

6

External communication tool – **technology** progress

Component Routemap

Stack Routemap

Internal technology planning process

- detailed plans support the ability to
meet the "Road Map" targets

Cost Reduction: Catalyst Technology Advancements

BALLARD®

Already Lab 1994 2004 >2010 **Demonstrated Platinum** 0.3-0.5 mg/cm² 8-10 mg/cm² 1.0 mg/cm² 0.3 mg/cm² **Processes** roll coating roll coating / CVD hand screen printing (knife, comma nanoparticle coating spraying bar) dispersion **Catalyst Structure** No catalyst Carbon Carbon **Corrosion-free Support Support** support **Support** Non-PGM or low Pt Metal Pt and Pt alloys Pt and Pt alloys Pt content alloys

8

Catalyst Reduction

-Tight control of catalyst loading and layer thickness

Durability: Failure Mode Understanding and Mitigation

BALLARD®

Internal Transfer Development – Peroxide Radical Attack on Perfluoroionomers

BALLARD®

10

BALLARD®

11

- World's largest test facility dedicated to fuel cell testing and research with more than 100 test stations
- 400,000 hours+ of tests/year
- Units from < 100 W to 250 kW
- Test capability from -40°F to +140°F
- Three fully equipped failure analysis labs
- Integrated data collection and reporting
- Specialized Accelerated Stress Test (AST) equipment and protocols
- Advanced development testing tools

- 24 cities
- 5 million passengers
- real world data

Vehicles powered by Ballard fuel cells have logged 2 million miles

Fuel Cell Fleets - Result in **Reliability Growth and Technology Advancement**

BALLARD®

Fuel Cell Stack Module Reliability Growth

New failure modes & lessons learned with each deployment

Automotive Path to Commercialization

BALLARD®

15

Fleet 2005-2008 2009-2011 2012-2014 2015-2018
Technology 2001 2005 2008 2010

Cost Reduction

Market Introduction

Key attribute improvements of each generation

- Durability
- Power density
- Cost reduction
- Freeze / thaw

- Power density
- Durability
- Robustness
- Freeze start (-15°C)
- Design for manufacture

- Cost reduction
- Power density
- Durability
- Robustness
- Freeze start (-25°C)
- Design for manufacture

- Cost reduction
- Reliability

BALLARD®

Fuel Cell Manufacturing Plant:

- Automotive certified supplier
- Installed capacity to meet CARB ZEV requirements of our customers through 2011
- Production quality prototypes, advanced process development
- Capacity will be added to manufacture volumes beyond 2012

- Fuel cells offer the best long-term alternative to the ICE
- Ballard has the R&D, product development, manufacturing, and financial strength to make fuel cells a commercial reality
- Ballard's published Technology "Road Map" is our public commitment to demonstrating commercially viable automotive fuel cell technology by 2010
- Ballard's partners have put 130 fuel cell vehicles on the road in 24 cities world-wide, significantly advancing the technology and proving the viability through real world usage
- Development of the next generation automotive fuel cell, the Mk1100, is on track

The ZEV mandate is an important driver for technology development and market adoption

